Category Archives: technology

Teaching with tablets: Pedagogy driving technology, or technology driving pedagogy?

If you are a teacher, then you have probably experienced the introduction of a new technology into your classroom at some point in time. Whether it was an interactive whiteboard, laptops or tablets, it is likely that you would have felt some pressure to use that technology as much as possible because of the expense involved. Often teachers are expected to incorporate new technologies without the support of appropriate professional development. That is, professional development that not only addresses the technical aspects of the devices, but the pedagogical considerations as well.

My research into the use of iPads in primary classrooms has revealed that many teachers find it a challenge to use technology creatively to teach mathematics when compared to other subject areas. I believe that the way technology is used in mathematics lessons often reflects how the teacher views and understands mathematics and the curriculum. The teachers who see mathematics as a collection of facts and rules to be memorised often rely on a drill and practice approach, and therefore limit the use of technology to applications that support this method. The plethora of drill and practice apps now available on tablets help perpetuate this teaching method. On the other hand, teachers who see mathematics as a collection of big ideas that need to be applied to rich, contextual activities are the ones who use tablets and other technologies in more creative ways, steering away from the mathematics specific applications. Often during the drill and practice approach, the technology becomes the focus of the lesson. However, when rich tasks are involved, the focus remains on the learning and the technology is used as a tool to promote the learning, access and present information.

So how can you make your use of technology more meaningful in mathematics lessons? Frameworks are often helpful in encouraging teachers to reflect on their practices, and one that is a good starting point is the SAMR model of technology integration by Puentedura (2006). The model represents a series of levels of technology integration, beginning at the substitution level, where technology simply acts as a direct substitute for traditional practices, with no improvement. The second level, augmentation, provides some functional improvement – imagine the use of a maths game app that gives instant feedback. The feedback component is the improvement. At the third level, modification, the technology has allowed for significant redesign of existing tasks. The final level, redefinition, allows us to create new tasks that were previously inconceivable.

I believe that we should be pushing ourselves to aim for the redefinition level of SAMR, however, this does not mean that technology should not be used at the lower levels. The most important thing to remember is that you must not let the technology determine the pedagogy – it should be the other way around, where the pedagogy is driving the technology. Another thing to think about is that no framework is perfect. Although the SAMR model is a good starting point, a major flaw is that it assumes that any use of technology is going to enhance teaching and learning. I disagree. I have seen lessons where the technology distracts students, and the focus is no longer on the mathematics: it’s on the technology. Technology driving pedagogy.

Apart from adding a ‘distraction’ level to SAMR, I would also like to suggest that consideration of student engagement sits as a backdrop behind the entire model. I would also want to consider how the proficiencies (Working Mathematically) align with the model. In the graphic below you will see that I have made some additions to SAMR, suggesting that the lower levels of the model align with the proficiency of fluency, and as you progress through the model, more proficiencies are added so that tasks that move beyond drill and practice promote understanding, problem solving and reasoning.

From: Engaging  Maths: iPad activities for teaching and learning, Attard, 2015.
From: Engaging Maths: iPad activities for teaching and learning, Attard, 2015.

This adapted model can be used as a tool to help plan and design tasks and activities that incorporate technology. On the other hand, it might help you make the decision to not use technology! Resist the temptation to use devices simply because you feel you have to – if it doesn’t enhance teaching and learning, don’t use it. If you are going to use those drill and practice type apps, then make sure they are embedded in good teaching – always include rich reflection prompts that provide children with the opportunity to talk about the mathematics involved in the task, the problems and challenges they encountered, and ways they can improve their learning. Remember, don’t let the technology drive the pedagogy – mathematics and learning should always be the focus!

Attard, C. (2015). Engaging maths: iPad activities for teaching and learning. Sydney: Modern Teaching Aids.
Puentedura, R. (2006). SAMR.   Retrieved July 16, 2013, from www.hippasus.com

Beyond the Bells and Whistles: Using iPads and other devices in primary mathematics classrooms

This week my new book, Engaging Maths: iPad Activities for Teaching and Learning, was published so I thought I would write about some of the thinking behind the book, which provides a range of teaching and learning ideas based on my research on student engagement and the effective use of mobile technologies.

As a teacher educator, I was very excited by the introduction of iPads back in 2010 and the prospect of using these devices to teach primary mathematics. Having been a primary school teacher for some years before beginning my career as an academic, I sensed that many teachers would be dazzled and distracted by the number of applications (apps) available for use (particularly in mathematics). I was keen to investigate how the tablets were being used in classrooms, particularly as there appeared to be little or no professional development opportunities relating to the pedagogical considerations involved in using the devices, due to their newness. So I conducted two research studies, each six months long, in two different schools where iPads were being introduced (Attard, 2013; Attard & Curry, 2012). I investigated the ways teachers used the devices in their mathematics lessons and I spoke to teachers and students about their perception of iPads.

Not surprisingly, the introduction of the iPads did seem to result in higher levels of student engagement. Another benefit described by the participating teachers was that the students had begun to engage with mathematics more at home. They did this by downloading the same apps that were being used in their mathematics lessons.

The teachers involved in both studies recognised that iPads hold the potential to enhance mathematics teaching and learning due to their wide range of affordances that include a vast variety of applications, ease of use, and their ubiquitous nature. However, they found it challenging to incorporate creative iPad use into mathematics lessons when compared to their integration into other subject areas such as English and science. During the course of the two studies, the teachers tended to rely on apps that are specifically designed for mathematics, but focused on a drill and practice approach that simply replaced the repetition of a standard worksheet or textbook page with some added animation and colour. Sometimes the apps that were used in the observed mathematics lessons were based on games, with little or no opportunity for students to develop their problem solving skills or being able to reflect on their learning, and limited opportunities for the teachers to capture evidence of learning.

These challenges could have been addressed with the support of professional development and an opportunity to share ideas with other teachers. As one teacher stated: “it’s probably about having that conversation with other teachers.” It must also be acknowledged that at the time of the studies, iPads were a very new technology and professional development relating specifically to iPads and mathematics was not readily available and perhaps is still not sufficiently available five years after their introduction. Having said that, professional development opportunities should not simply focus on specific devices. Rather, due to the rapid pace of technology development, they should be focused on understanding the pedagogy related to the incorporation of any type of technology, and the development of teachers’ Technological Pedagogical Content Knowledge (Koehler & Mishra, 2009).

Although my new book has the word ‘iPads’ in its title, the theory underpinning the ideas and strategies apply to any technology, and in fact, any new resource you are considering using. The activities within the book can be adapted to suit different devices, different content, and a diversity of learners. More importantly, the book is intended as a form of professional learning for teachers struggling with finding meaningful, creative and powerful ways to use technology to enhance the teaching and learning of mathematics. Remember, don’t be distracted by bells and whistles: technology is only as good as the pedagogy driving it – careful consideration must be taken to ensure the focus remains on the learning, rather than on the technology.

Attard, C. (2013). Introducing iPads into Primary Mathematics Pedagogies: An Exploration of Two Teachers’ Experiences. In V. Steinle, L. Ball, & C. Bardini (Eds.), Mathematics education: Yesterday, today and tomorrow (Proceedings of the 36th Annual conference of the Mathematics Education Research Group of Australasia) (pp. 58-65), Melbourne: MERGA

Attard C., & Curry, C. (2012) Exploring the use of iPads to engage young students with mathematics, In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics Education: Expanding Horizons. (Proceedings of the 35th annual conference of the Mathematics Education Research Group of Australasia), pp 75-82. Singapore: MERGA.

Koehler, M. J., & Mishra, P. (2009). What is technological pedagogical content knowledge? Contemporary Issues in Technoogy and Teacher Education, 9(1), 60-70.