What hands-on materials and resources do you have in your mathematics classroom? Concrete materials, coupled with good teaching practice and strong teacher content knowledge, provide opportunities for learners to construct rich understandings of mathematical concepts. In addition, allowing opportunities for children to physically engage with materials can be much more meaningful than working only with visual or even digital representations, particularly when learners are still in the concrete phase of their learning about specific concepts. For example, if you’re teaching concepts relating to 3-dimensional space, it makes sense that it is better for children to be able to manipulate real objects in order to explore their properties and relate their learning to real-life, as opposed to exploring objects through graphical representations only. Concrete materials also promote the use of mathematical language, reasoning, and problem solving.

I’m often asked about the essential resources required for primary mathematics classrooms. There are quite a few, but if you have a limited budget or storage space, there are some resources that are what I would consider to be essential, regardless of the year level that you are teaching. My advice would be to invest in materials that are flexible and able to be used in a variety of ways, perhaps in conjunction with other materials. Also consider collecting things that are not necessarily intended as educational resources but may have some mathematical value, such as collections of things (keys, lids, plastic containers, etc.) for activities that require sorting and classifying. Here is a list of basics that can be purchased from educational resources suppliers (some of the items can also be sources at normal retail and/or discount stores):

- Counters
- Dice (as well as the standard six sided dice, you could purchase many other variations including blank dice)
- Calculators (yes, these are great, even in the early years. Think about using them to investigate numbers rather than simply as , computational devices)
- Base 10 material (be careful how you ‘name’ these – using terms like ones, tens, hundreds and thousands limits their use. It is best to use the terms minis, longs, flats and blocks so they can be used flexibly to teach a range of whole number and measurement concepts)
- Measurement materials (you’ll need a range of things to cover all aspects of measurement, eg. scales, tape measures, rulers, )
- Pattern blocks (great for more than just exploring 2D shape – these can be used to teach fractions, place value, area, perimeter etc.)
- Dominoes (one of my truly favourite things!)
- Playing cards
- Unifix blocks
- Paper shapes (circles, squares, etc.) to promote a range of concepts including fractions, shape, and measurement

Of course, any resource is only as good as the teacher using it and the way it is integrated into teaching and learning. Prior to using any concrete material or resource, consider the purpose of the lesson and the mathematical concepts being covered. Also consider how you can make the most out of those resources – how will you differentiate the task, and how will you capture evidence of learning? This is where technology can play a useful role and allow teachers and students to capture evidence when working with concrete materials. Technology can also be used alongside concrete materials. For example, work with pattern blocks can be recorded using the *Pattern Block App *on an iPad. Or students could integrate their use of concrete materials with a verbal reflection or explanation using the *Explain Everything *app.

The best way to get the most out of concrete materials is to do some reading. There are many high quality resource books and there are also many great websites such as *NCTM Illuminations *that provide excellent teaching ideas. Once you see the potential of high quality, flexible concrete materials such as those listed above, your students will become much more engaged with mathematics and will develop deeper conceptual understandings.

And one last thing…students are **never** too old or too smart to benefit from hands-on materials so never keep them locked away in a cupboard or storeroom (the materials, not the students)! Students should feel they can use concrete materials when and if they need them. After all, we want our students to be critical, creative mathematicians, and hands-on materials assist learning, and promote flexibility in thinking and important problem solving skills.