Now that I’ve got your attention, let’s talk about assessment practices and primary mathematics. Some time ago I wrote a post about assessment, and I’m updating it here because I continue to have concerns about why, how, when and what we are assessing in our primary mathematics classrooms.

“Effective pedagogy requires effective assessment, assessment that provides the critical links between what is valued as learning, ways of learning, ways of identifying need and improvement, and perhaps most significantly, ways of bridging school and other communities of practice” (Wyatt-Smith, Cumming, Elkins, & Colbert, 2010, p. 320)

It’s through our assessment we communicate most clearly to students those learning outcomes we value, yet it’s often held that no subject is as associated with its form of assessment as is mathematics (Clarke, 2003). Assessment practices in mathematics often consist of formal methods such as tests and examinations (Wiliam, 2007), and it’s believed that such strategies need as much consideration for renewal as does content and classroom pedagogy. Although lots of progress has been made in terms of improving mathematics teaching and learning and curriculum, many such improvements have failed due to a mismatch between assessment practices and pedagogy (Bernstein, 1996; Pegg, 2003). It’s been suggested that in mathematics, there should not be more assessment, but more appropriate assessment strategies implemented to inform learning and teaching as well as report on progress and achievement (Australian Association of Mathematics Teachers, 2008; Clarke, 2003). And this is one of the points I want to highlight – assessment to inform teaching. Regardless of the type of assessments we use, are we using assessment data in the right way?

What do you do with your assessment work samples? Do you simply use the scores to determine how students are grouped, or what aspects of a topic you need to cover? How often do we, as teachers, take the time to analyse the work samples in order to identify specific misconceptions? Imagine a scenario where students are grouped according to assessment scores. Each of those groups are then exposed to pedagogies intended to address the ‘level’ of the group. What if, within each group, there were a range of misconceptions? And what about the top groups? What if work samples that resulted in accurate answers exposed misconceptions despite being correct?

When students transition from one level of schooling to another, it’s not uncommon to hear teachers complaining about the broad range of abilities, and more specifically, those students who appear not to have achieved the most basic skills. How have these students managed to get to kindergarten/Year 3/Year 6/high school/university without knowing how to……? Mathematics content is hierarchical – when students miss out on learning concepts in the early years, the gaps in knowledge continue to widen as they progress through school. Whether caused by inattention, absence from school, or any other reason, students find it hard to catch up when they’re missing pieces of the mathematical jigsaw puzzle. It’s like building a house on faulty foundations.

So how can we fix this? A teacher recently told me that she didn’t have time to analyse the responses in an assessment task. Isn’t this our job? How can we manage workloads so that teachers have the time to really think about where students are going wrong, and how can teachers access professional learning to assist them in being able to identify and address students’ misconceptions?

Another concern is related to the quality of assessment tasks. I have seen many tasks that are poorly worded or poorly set out, or have diagrams that can only lead to confusion or misconceptions. Often tasks test mathematical content but do not provide opportunities for students to express their reasoning. A student can achieve a correct answer while maintaining a misconception – if we don’t ask them about their thinking, are we really assessing their true ability?

I think one way we can address these issues is to think carefully about the design and the quantity of assessment tasks. Administer fewer, better quality tasks that are designed to assess both the content and the processes of mathematics. That is, tasks that require students to show their working, explain their thinking, and produce an answer. The more they show, the more we see. Another strategy to assist teachers is to provide time for teachers to look at assessment samples and analyse them collaboratively, discussing the identified misconceptions and planning strategically to address them.

The knowledge that teachers need to effectively teach mathematics is special. We need to know more about mathematics than the average person – we need to understand where, why and when our students are likely to go wrong, so we can either avoid misconceptions occurring, or address them when they do. This specialist knowledge comes from continued professional learning and collaboration with peers. Don’t just rely on the curriculum documents – we need to look beyond this to ensure we have that specialist knowledge.

This post posed more questions than answers in relation to assessment in the mathematics classroom. Hopefully it will spark some conversation and thinking about what we are doing with the assessment work samples we gather, regardless of why type of assessments they are. If we don’t try and change the way we use assessment, we’ll always have those students who will struggle with mathematics, and while there will always be a range of achievement levels in every group of students, that doesn’t mean we shouldn’t keep trying to close those gaps!

References:

Australian Association of Mathematics Teachers. (2008). The practice of assessing mathematics learning. Adelaide, SA: AAMT Inc.

Bernstein, B. (1996). Pedagogy, symbolic control and identity: Theory, research, critique. London: Taylor and Francis.

Clarke, D. (2003, 4-5 December). Challenging and engaging students in worthwhile mathematics in the middle years. Paper presented at the Mathematics Association of Victoria Annual Conference: Making Mathematicians, Melbourne.

Pegg, J. (2003). Assessment in mathematics. In J. M. Royer (Ed.), Mathematical cognition (pp. 227-260). Greenwich, CT: Information Age Publishing.

Wiliam, D. (2007). Keeping learning on track: Classroom assessment and the regulation of learning. In F. K. J. Lester (Ed.), Second handbook of mathematics teaching and learning (pp. 1053-1098). Greenwich, CT: Information Age Publishing.

Wyatt-Smith, C. M., Cumming, J., Elkins, J., & Colbert, P. (2010). Redesigning assessment. In D. Pendergast & N. Bahr (Eds.), Teaching middle years: Rethinking curriculum, pedagogy and assessment (2nd ed., pp. 319-379). Crows Nest, NSW: Allen & Unwin.