Category Archives: Mathematics lessons

Flipped learning in primary and secondary mathematics: Some lessons

Flipped classrooms and flipped learning approaches are fast becoming a popular practice in mathematics classrooms, providing opportunities for students to learn anywhere, at any time. A flipped pedagogical approach may go some way in addressing the continuing issue of student disengagement with mathematics, yet how do we know if it really works? And what are the advantages and disadvantages to flipped approaches? In this blog post I provide a brief explanation of flipped learning before sharing some of the lessons I’ve learned about the flipped approach from my research into the effective use of technology in mathematics classrooms.

First, let’s consider how flipped learning works. There are various approaches that range from the provision of direct instruction via the use of video recorded lectures, to those that allow teachers to individualise learning according to student needs. The fundamental reason flipped learning approaches evolved was to take advantage of new technologies that allow for the introduction of new knowledge via multi-media and shift passive learning (via direct instruction) to allow teachers and students to make better use of classroom time. Pre-lesson materials can take the form of prescribed readings, teacher-produced videos, screencasts that may incorporate resources created on software such as GeoGebra, videos sourced from Youtube, or resources created by others such as Khan Academy. Face to face lessons can then be freed up for more teacher/student and student/student interaction, collaboration, application of learning through problem solving and investigation, and opportunities to provide intervention where necessary (Bhagat, Chang, & Chang, 2016; Lo & Hew, 2017; Weinhandl, Lavicza, & Süss-Stepancik, 2018).  

Lessons from research

Through my various technology-related research projects I have seen a variety of models of flipped approaches from primary through to senior secondary classrooms. The most important lesson I’ve learned is, just like any other teaching resource, a flipped learning approach is only as good as the person driving it: the teacher. It’s the teacher and his or her understanding of student needs, along with the ability to address those needs, that can determine the effectiveness of any flipped approach. For example, in research I conducted approximately five years ago, a Year 3 teacher tried a flipped approach. Unfortunately, not all of the students understood the content that was covered in the pre-lesson videos, and the flipped approach failed. This leads me to lesson two: A one-size-fits-all approach very rarely works in the classroom and is even more precarious in a flipped approach where young students don’t have access to the teacher to seek clarification.

In the five years since that research project, the emergence of new technologies and software has meant that flipped learning in the mathematics classroom has evolved and become much more sophisticated. Apps such as SeeSaw provide different flipped learning opportunities that allow multi-directional communication between home and school, as well as the sharing of work samples.  Productivity packages such as OneNote and learning management systems such as Canvas or Echo allow for multimedia to be used rather than the simple use of video. Programs such as Matific and Prodigy allow teachers to allocate different levels of activity to different students and track student achievement.These applications have made it easier than ever to differentiate learning, view student progress, and collate assessment data, which leads me to lesson three: flipped learning is hard work for the teacher.

A successful flipped learning approach requires the teacher to be vigilant beyond the timetabled mathematics lesson. If students are accessing and responding to resources anywhere and anytime, this requires a substantial commitment on the part of the teacher. Similarly, if students are not accessing the set tasks in preparation for their lessons, the teacher must also be aware and adjust lessons accordingly. The issue of students failing to access material prior to lessons is a common one and was observed in my most recent research. It is important to carefully consider the students and their contexts beyond the mathematics classroom.  The fourth lesson, therefore, is to beware of assumptions about access. Not all students will have access to devices or internet. Sometimes a flipped approach may result in exclusion, depending on socioeconomic circumstances or location. For example, in one of the schools involved in my research, there were connectivity issues due to the location.  

The final lesson I’d like to share about flipped learning is perhaps the most important. It can help students, particularly those who are disengaged with mathematics. The teachers who use flipped learning effectively in my most recent research were able redefine mathematics learning spaces for their students. The flipped approach promoted self-confidence, built strong connections between teachers and students, and provided ‘just in time’ learning and support, and self-paced learning without the stigma usually associated with students who feel they just can’t do mathematics.

There is emerging evidence that a flipped learning approach in mathematics is achieving success in relation to increasing student engagement due to the increased autonomy that allows students more access to learning resources. However, the majority of research on flipped learning focuses on tertiary and secondary education, with little attention paid to the primary classroom. There is also a need to explore more deeply how and why flipped learning approaches improve student engagement, if we are to take advantage of the affordances of emerging technologies to enhance students’ learning experiences and ultimately improve outcomes and attrition in higher level mathematics. In my upcoming blog posts I will provide further detail about the different models of flipped learning I observed, and how they influenced student engagement and learning.

References

Bhagat, K. K., Chang, C.-N., & Chang, C.-Y. (2016). The Impact of the Flipped Classroom on Mathematics Concept Learning in High School. Journal of Educational Technology & Society, 19(3), 134–142.

Lo, C. K., & Hew, K. F. (2017). A critical review of flipped classroom challenges in K-12 education: possible solutions and recommendations for future research. Research and Practice in Technology Enhanced Learning, 12(1), 4. https://doi.org/10.1186/s41039-016-0044-2

Weinhandl, R., Lavicza, Z., & Süss-Stepancik, E. (2018). Technology-enhanced Flipped Mathematics Education in Secondary Schools: A Synopsis of Theory and Practice. K-12 STEM Education, 4(3), 377–389. https://doi.org/10.14456/k12stemed.2018.9

Don’t bank on Dollarmites to teach financial literacy: here are our alternatives

File 20190222 195870 17bnfyg.jpg?ixlib=rb 1.1
Research shows combining maths education and financial literacy concepts is a better way to teach children good financial habits and boost numeracy. http://www.shutterstock.com

Catherine Attard, Western Sydney University

The recent royal commission into banking has revealed rampant wrongdoing by the big banks. As a result, there is renewed public interest in school banking schemes. The Commonwealth Bank’s Dollarmites program has once again come into the spotlight.

Dollarmites was awarded a 2018 Choice Magazine Shonky award. The program has over 300,000 active participants, and although it’s not the only school banking program, it’s the largest by far.


Read more: Should banks play a role in teaching kids about how to manage money effectively?


According to the Commonwealth Bank, the motive behind the Dollarmites program is to teach good savings habits and develop financial literacy. But I could find little independent research evidence it actually does.

On the surface, the Commonwealth Bank’s intentions are good. But research has found 40% of people develop loyalty to their banks and continue banking with them into adulthood.

We need to consider other options. Here are some research-backed alternatives.

Alternatives to school banking

Financial literacy can be taught both at home and at school, in practical and meaningful ways. If we consider the core business of schools to be learning, then our classrooms are not an appropriate place for the distractions of corporate marketing. There is definitely no time to be wasted on the logistics of organising school banking.


Read more: Financial literacy is a public policy problem


In fact, schools have several options when it comes to teaching financial literacy. There are a number of free resources already aligned to the curriculum.

In my research, using ASIC’s MoneySmart resources, financial literacy was combined with maths. Students did activities that allowed them to deal with real money while applying maths skills.

For example, some students borrowed money from the school principal to set up small businesses. They then ran their business at a school market day, and used their profits to buy Christmas gifts for underprivileged children.

Simple activities such as setting up classroom economies or allowing children to help plan events (such as class excursions) are also excellent at engaging children in financial literacy in a fun, realistic and interactive way.

Findings from my study showed learning about money and maths improved engagement, understanding of mathematical concepts and knowledge of financial concepts such as budgeting, profit and loss, lending and interest.

There are also resources such as Banqer, a free subscription-based app that allows students to manage fictitious money to budget and cover expenses (such as “renting” a desk). In my professional opinion, apps such as this are high quality. They may have corporate sponsorships, but are offered brand-free, which is preferable.

Parents can teach financial literacy too

Parents are one of the biggest influences on the financial habits of children. Parents have a responsibility to model good financial behaviours.

Involving children in shopping, having discussions about family budgeting and encouraging children to save some of their pocket money using a bank account of their choice all contribute to the development of financial literacy. These are really simple, everyday things parents can do to help their children learn financial literacy.


Read more: Teaching kids about maths using money can set them up for financial security


Catherine Attard, Associate Professor, Mathematics Education, Western Sydney University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Engaging children with mathematics: Are you an engaged teacher?

“The first job of a teacher is to make the student fall in love with the subject. That doesn’t have to be done by waving your arms and prancing around the classroom; there’s all sorts of ways to go at it, but no matter what, you are a symbol of the subject in the students’ minds” (Teller, 2016).

Teller (2016), makes a powerful point about teaching and engagement, and how important it is that we, as teachers, portray positive attitudes towards our subject and towards teaching it. Do you consider yourself an engaged teacher? Are your students deeply engaged with mathematics, and how do you know? In education we talk about student engagement every day, but what do we actually mean when we use the term ‘engagement’? When does real engagement occur, and how do we, as teachers, influence that engagement? In this post, I will define the construct of engagement and pose some questions that will prompt you to reflect on how your teaching practices and the way you interpret the curriculum, influences your own engagement with the teaching of mathematics and, as a result, the engagement of your students.

Student Engagement: On Task vs. In Task

In education, engagement is a term used to describe students’ levels of involvement with teaching and learning. Engagement can be defined as a multidimensional construct, consisting of operative, cognitive, and affective domains. Operative engagement encompasses the idea of active participation and involvement in academic and social activities, and is considered crucial for the achievement of positive academic outcomes. Affective engagement includes students’ reactions to school, teachers, peers and academics, influencing willingness to become involved in school work. Cognitive engagement involves the idea of investment, recognition of the value of learning and a willingness to go beyond the minimum requirements

It’s easy to fall into the trap of thinking that students are engaged when they appear to be busy working and are on task.  True engagement is much deeper – it is ‘in task’ behaviour, where all three dimensions of engagement; cognitive, operative, and affective, come together (see figure 1).  This leads to students valuing and enjoying school mathematics and seeing connections between the mathematics they do at school and the mathematics they use in their lives outside school. Put simply, engagement occurs when students are thinking hard, working hard, and feeling good about learning mathematics.

Screen Shot 2017-05-23 at 1.35.49 pm

There are a range of influences on student engagement. Family, peers, and societal stereotypes have some degree of influence. Curriculum and school culture also play a role. Arguably, it is teachers who have a powerful influence on students’ engagement with mathematics (Anthony & Walshaw, 2009; Hattie, 2003). Classroom pedagogy, the actions involved in teaching, is one aspect of a broader perspective of the knowledge a teacher requires in order to be effective. The knowledge of what to teach, how to teach it and how students learn is referred to as pedagogical content knowledge (PCK). The construct of PCK was originally introduced by Schulman (1986), and substantial research building on this work has seen a strong focus on PCK in terms of mathematics teaching and learning (Delaney, Ball, Hill, Schilling, & Zopf, 2008; Hill, Ball, & Schilling, 2008; Neubrand, Seago, Agudelo-Valderrama, DeBlois, & Leikin, 2009). Although this research provides insight into the complex knowledge required to effectively teach mathematics, little attention is paid to how teachers themselves are engaged with teachers.

Engaged Teachers = Engaged Students

It makes sense that teachers need to be engaged with the act of teaching in order to effectively engage their students. If we take the definition of student engagement and translate it to a teaching perspective, perhaps it would look something like Figure 2, where teachers are fully invested in teaching mathematics, work collaboratively with colleagues to design meaningful and relevant tasks, go beyond the minimum requirements of delivering curriculum, and genuinely enjoy teaching mathematics in a way that makes a difference to students. In other words, thinking hard, working hard, and feeling good about teaching mathematics.

Screen Shot 2017-05-23 at 1.35.58 pm

Are you an engaged teacher?

Teaching is a complex practice with many challenges. Teaching mathematics has the additional challenge of breaking down many stereotypical beliefs about mathematics as being difficult and only for ‘smart’ people, mathematics viewed as black and white/right or wrong, and mathematics as a simply focused on arithmetic, to name a few. However, there are elements of our day to day work that we can actively engage with to disrupt those stereotypes, make teaching more enjoyable, and promote deeper student engagement. The following section provides some thoughts and questions for reflection.

Curriculum

How do you interpret the curriculum? Do you view it has a series of isolated topics to be taught/learned in a particular order, or do you see it has a collection of big ideas with conceptual relationships within and amongst the strands? How do you incorporate the General Capabilities and Cross-curriculum priorities in your teaching? Do you make the Working Mathematically components a central part of your teaching?

Planning

How do you plan for the teaching of mathematics? Does your school have a scope and sequence document that allows you to cater to emerging student needs? Does the scope and sequence document acknowledge the big ideas of mathematics or does it unintentionally steer teachers into treating topics/concepts in isolation?

Assessment

How often do you assess? Are you students suffering from assessment fatigue and anxiety? Do you offer a range of assessment tasks beyond the traditional pen and paper test? Do your questions/tasks provide opportunities for students to apply the Working Mathematically components?

Tasks

What gets you excited about teaching mathematics? Do you implement the types of tasks that you would get you engaged as a mathematician? Do your tasks have relevance and purpose?  Do you include variety and choice within your task design? Do you take into account the interests of your students when you plan tasks? Do you incorporate student reflection into your tasks?

Grouping

How do you group your students? There are many arguments that support mixed ability grouping, yet there are also times when ability grouping is required. Is the way you group your students giving them unintended messages about ability and limiting their potential?

Technology

How do you use digital technology to enhance teaching and learning in your classroom? Do you take advantage of emerging technologies and applications? Do you use digital technology in ways that require students to create rather than simply consume?

Professional Learning

How do you incorporate professional learning into your role as an educator? Do you actively pursue professional learning opportunities, and do you apply what you have learned to your practice? Do you share what you have learned with your colleagues, promoting a community of practice within your teaching context?

There are many other aspects of teaching mathematics that influence our engagement as teachers, and of course, the engagement of our students. Many factors, such as other non-academic school-related responsibilities, are bound to have some influence over our engagement with teaching. However, every now and then it is useful to stop and reflect on how our levels of engagement, our enthusiasm and passion for the teaching of mathematics, can make a difference to the engagement, and ultimately the academic outcomes, of our students.

References:

Anthony, G., & Walshaw, M. (2009). Effective pedagogy in mathematics (Vol. 19). Belley, France.

Attard, C. (2014). “I don’t like it, I don’t love it, but I do it and I don’t mind”: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1-14.

Delaney, S., Ball, D. L., Hill, H. C., Schilling, S. G., & Zopf, D. (2008). “Mathematical knowledge for teaching”: Adapting U.S. measures for use in Ireland. Journal for Mathematics Teacher Education, 11(3), 171-197.

Hattie, J. (2003). Teachers make a difference: What is the research evidence? Paper presented at the Building Teacher Quality: The ACER Annual Conference, Melbourne, Australia.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: Conceptualising and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372-400.

Neubrand, M., Seago, N., Agudelo-Valderrama, C., DeBlois, L., & Leikin, R. (2009). The balance of teacher knowledge: Mathematics and pedagogy. In T. Wood (Ed.), The professional education and development of teachers of mathematics: The 15th ICMI study (pp. 211-225). New York: Springer.

Teller, R.  (2016) Teaching: Just like performing magic. Retrieved from http://www.theatlantic.com/education/archive/2016/01/what-classrooms-can-learn-from-magic/425100/?utm_source=SFTwitter

Using mathematical inquiry to make mathematics meaningful

At the moment I’m involved in a project with the Sydney Metro (Transport for NSW), currently the largest infrastructure project in Australia. When complete, the Sydney Metro project is going to change the way many Sydney residents work, live and socialise. My involvement with this project has required me to design, deliver and research the effectiveness of a professional learning program. In this program, teachers from all stages of schooling and a range of curriculum areas learn about using inquiry based learning and then design, implement and evaluate units of work that use the Sydney Metro project as the stimulus for inquiry.  So what’s that got to do with engaging maths? My work in this project has confirmed what I’ve always believed – contextualising learning makes mathematics (and other disciplines, of course) more meaningful, purposeful and relevant for students. It shifts the traditional approach of ‘just in case’ learning to ‘just in time learning’.

Using contexts from student’s lives, such as Sydney Metro, makes mathematics come alive. For example, some of the students participating in the inquiry based units are looking at the social implications of having a rail station constructed in their community where there previously wasn’t one. This inquiry provides a purpose for designing survey questions, collecting, representing and analysing data that has meaning and purpose. Others are looking at the engineering aspects of the project relating to the tunnelling that is currently underway. Some are working on design aspects relating to the trains themselves or the stations and some are looking at mapping – planning future metro lines, or timing (the system won’t have a timetable).

The possibilities are endless, but for these units of work (or indeed, any inquiry based unit of work) to be successful, the teachers planning them have to consider carefully the potential directions that students will take their inquiry if the units are to be true inquiry based learning that is driven by students’ interests. This requires a strong knowledge of curriculum and a willingness to hand over some control of the learning to the students. It may even involve the introduction of content beyond the students’ current grade.
Another consideration when planning inquiry units is the inclusion of other aspects of our curriculum, beyond content. For example, in mathematics we have the Proficiencies (Working Mathematically in NSW) that represent the processes of mathematics. It’s impossible to conduct inquiry based learning without these processes and inquiry learning is a perfect opportunity to develop, refine and show evidence of these processes. Then we have the General Capabilities. Again, inquiry based learning provides an opportunity to access mathematics while accessing these capabilities, enhancing the relevance of the learning.

Where do you find resources for inquiry? Take a look around at what is happening in your community, in the media, or simply the things that your students are interested in. Consider how those things could spark curiosity in your students (or how you could promote that curiosity within  your students). Model how to ask good questions (students need to know how to do this – it doesn’t always come naturally). Be prepared for it to get messy, search for resources that the students might need or help them find resources. Be prepared to teach a range of mathematical concepts as the need arises.

I’ll you with an example of a resource that I believe would be a great stimulus for inquiry – take a look, at let me know what you think! Every Drop Counts

Tips for beginning primary teachers: What’s in your maths toolbox?

If you’re an early career teacher, chances are you spend lots of your spare time looking for good maths resources. Some of you may have your own class, while others are beginning their careers as a relief teacher, having to move from one class to another, and often between different schools. Many teachers who are starting out have to build their toolbox of resources from nothing. Where do you begin? How can you develop a bank of activities that suits lots of different levels and abilities, and engages children of diverse abilities?

One of the first things I would recommend would be to invest in a small range of materials that allow you to implement some simple tasks that could then be expanded into interesting and worthwhile mathematical investigations. For example, if you purchase around ten sets of playing cards (go to a cheap two dollar store), you could learn a few basic games (Snap, Making 10, Playing with Place Value – see my book Engaging Maths: Exploring Number) that could then be differentiated according to the students you are teaching. A simple game of Making 10 could be used from Grade 1 all the way to Grade 6 by simply changing the rules.

Other materials that are a ‘must have’ for beginning teachers are dice and dominoes. There are many simple investigations that could lead from simple explorations with these materials. For example, use the dice to explore probability or play a game of Greedy Pig. Play a traditional game of dominoes before adding a twist to it, or simply ask students to sort the dominoes (students have to select their own criteria for sorting)– an interesting way to gain insight into students’ mathematical thinking and a great opportunity for using mathematical language. Once students have sorted the dominoes conduct an ‘art gallery tour’ and ask other students to see if they can work out how others have sorted out their dominoes. Photograph the sorting and display then on an Interactive Whiteboard for a whole class discussion and reflection…the list goes on!

Another ‘must have’ for beginning teachers is a bank of good quality resource books. Don’t fall into the trap of purchasing Black Line Masters or books full of worksheets to photocopy. You don’t want your students to be disengaged! Books such as my Engaging Maths series (http://engagingmaths.co/teaching-resources/books/ ), or any of Paul Swan’s books or resources (http://www.drpaulswan.com.au/resources/) are a great place to start. Explore some of the excellent free resources available online such as http://nrich.maths.org/teacher-primary and http://illuminations.nctm.org/, but do be aware that some resources produced outside of Australia will need to adapted for the Australian Curriculum: Mathematics.

In my research on student engagement, I found that students would remember what they would recall as a ‘good’ mathematics lesson for a very long period of time. In fact, some of the students in my PhD study talked about a ‘good’ mathematics lesson two years after it had taken place. Whether you are lucky enough to have your own class or have to begin your career as a relief teacher moving from class to class, you can make an impact on the students in your care and the way the view mathematics by being prepared with your ‘toolbox’ of engaging and worthwhile activities.

 

More tips for teachers: Essential materials for every mathematics classroom

What hands-on materials and resources do you have in your mathematics classroom?  Concrete materials, coupled with good teaching practice and strong teacher content knowledge, provide opportunities for learners to construct rich understandings of mathematical concepts. In addition, allowing opportunities for children to physically engage with materials can be much more meaningful than working only with visual or even digital representations, particularly when learners are still in the concrete phase of their learning about specific concepts. For example, if you’re teaching concepts relating to 3-dimensional space, it makes sense that it is better for children to be able to manipulate real objects in order to explore their properties and relate their learning to real-life, as opposed to exploring objects through graphical representations only. Concrete materials also promote the use of mathematical language, reasoning, and problem solving.

I’m often asked about the essential resources required for primary mathematics classrooms. There are quite a few, but if you have a limited budget or storage space, there are some resources that are what I would consider to be essential, regardless of the year level that you are teaching. My advice would be to invest in materials that are flexible and able to be used in a variety of ways, perhaps in conjunction with other materials. Also consider collecting things that are not necessarily intended as educational resources but may have some mathematical value, such as collections of things (keys, lids, plastic containers, etc.) for activities that require sorting and classifying. Here is a list of basics that can be purchased from educational resources suppliers (some of the items can also be sources at normal retail and/or discount stores):

  • Counters
  • Dice (as well as the standard six sided dice, you could purchase many other variations including blank dice)
  • Calculators (yes, these are great, even in the early years. Think about using them to investigate numbers rather than simply as , computational devices)
  • Base 10 material (be careful how you ‘name’ these – using terms like ones, tens, hundreds and thousands limits their use. It is best to use the terms minis, longs, flats and blocks so they can be used flexibly to teach a range of whole number and measurement concepts)
  • Measurement materials (you’ll need a range of things to cover all aspects of measurement, eg. scales, tape measures, rulers, )
  • Pattern blocks (great for more than just exploring 2D shape – these can be used to teach fractions, place value, area, perimeter etc.)
  • Dominoes (one of my truly favourite things!)
  • Playing cards
  • Unifix blocks
  • Paper shapes (circles, squares, etc.) to promote a range of concepts including fractions, shape, and measurement

Of course, any resource is only as good as the teacher using it and the way it is integrated into teaching and learning. Prior to using any concrete material or resource, consider the purpose of the lesson and the mathematical concepts being covered. Also consider how you can make the most out of those resources – how will you differentiate the task, and how will you capture evidence of learning? This is where technology can play a useful role and allow teachers and students to capture evidence when working with concrete materials. Technology can also be used alongside concrete materials. For example, work with pattern blocks can be recorded using the Pattern Block App on an iPad. Or students could integrate their use of concrete materials with a verbal reflection or explanation using the Explain Everything app.

The best way to get the most out of concrete materials is to do some reading. There are many high quality resource books and there are also many great websites such as NCTM Illuminations that provide excellent teaching ideas. Once you see the potential of high quality, flexible concrete materials such as those listed above, your students will become much more engaged with mathematics and will develop deeper conceptual understandings.

And one last thing…students are never too old or too smart to benefit from hands-on materials so never keep them locked away in a cupboard or storeroom (the materials, not the students)! Students should feel they can use concrete materials when and if they need them. After all, we want our students to be critical, creative mathematicians, and hands-on materials assist learning, and promote flexibility in thinking and important problem solving skills.

Tips for Teachers: Critical ingredients for a successful mathematics lesson

What are the ingredients for an effective mathematics lesson? Teachers are continually faced with a range of advice or ideas to improve their mathematics lessons and often this just creates confusion. It’s a little bit like being a cook. New recipes appear online and in cookbooks on bookstore shelves, but often they’re just adaptations of classic recipes that have been around before, their foundation ingredients are tried and tested, and often evidence based. There are always the staple ingredients and methods that are required for the meal to be successful.

The following is a list of what I consider to be important ingredients when planning and teaching an effective mathematics lesson. The list (or recipe) is split into two parts: lesson planning and lesson structure.

Lesson planning:

  • Be clear about your goal. What exactly do you want your students to learn in this lesson? How are you going to integrate mathematical content with mathematical processes? (The proficiencies or Working Mathematically components) Will you consider the General Capabilities in your planning?
  • Know the mathematics. If you don’t have a deep understanding of the mathematics or how students learn that aspect of mathematics, how can you teach it effectively? Where does the mathematics link across the various strands within the mathematics curriculum?
  • Choose good resources. Whether they are digital or concrete materials, make sure they are the right ones for the job. Are they going to enhance students’ learning, or will they cause confusion? Be very critical about the resources you use, and don’t use them just because you have them available to you!
  • Select appropriate and purposeful tasks. Is it better to have one or two rich tasks or problems, or pages of worksheets that involve lots of repetition? Hopefully you’ve selected the first option – it is better to have fewer, high quality tasks rather than the traditional worksheet or text book page. You also need to select tasks that are going to promote lots of thinking and discussion.
  • Less is more. We often overestimate what students will be able to do in the length one lesson. We need to make sure students have time to think, so don’t cram in too many activities.
  • You don’t have to start and finish a task in one lesson. Don’t feel that every lesson needs to be self-contained. Children (and adults) often need time to work on complex problems and tasks – asking students to begin and end a task within a short period of time often doesn’t give them time to become deeply engaged in the mathematics. Mathematics is not a race!

Lesson Structure:

  • Begin with a hook. How are you going to engage your students to ensure their brains are switched on and ready to think mathematically from the start of each lesson? There are lots of ways to get students hooked into the lesson, and it’s a good idea to change the type of hook you use to avoid boredom. Things like mathematically interesting photographs, YouTube clips, problems, newspaper articles or even a strategy such as number busting are all good strategies.
  • Introduction: Make links to prior learning. Ensure you make some links to mathematics content or processes from prior learning – this will make the lesson more meaningful for students and will reassure anxious students. Use this time to find out what students recall about the particular topic – avoid being the focus of attention and share the lesson with students. Talk about why the topic of the lesson is important – where else does it link within the curriculum, and beyond, into real life?
  • Make your intentions clear. Let students know what they’re doing why they’re doing it. How and where is knowing this mathematics going to help them?
  • Body: This is a good time for some collaboration, problem solving and mathematical investigation. It’s a time to get students to apply what they know, and make links to prior learning and across the mathematics curriculum. This is also a time to be providing differentiation to ensure all student needs are addressed.
  • Closure: This is probably the most important time in any mathematics lesson. You must always include reflection. This provides an opportunity for students to think deeply about what they have learned, to make connections, and to pose questions. It’s also a powerful way for you, the teacher, to collect important evidence of learning. Reflection can be individual, in groups, and can be oral or written. It doesn’t matter, as long as it happens every single lesson.

There are many variables to the ingredients for a good mathematics lesson, but most importantly, know what and how you are teaching, provide opportunities for all students to achieve success, and be enthusiastic and passionate about mathematics!