Critical reflection is a skill that doesn’t come naturally for many students, yet it is one of the most important elements of the learning process. As teachers, not only should we practice what we preach by engaging in critical reflection of our practice, we also need to be modelling critical reflection skills to our students so they know what it looks like, sounds like, and feels like (in fact, a Y chart is a great reflection tool).

How often do you provide opportunities for your students to engage in deep reflection of their learning? Consider Carol Dweck’s research on growth mindset. If we want to convince our students that our brains have the capability of growing from making mistakes and learning from those mistakes, then critical reflection must be part of the learning process and must be included in every mathematics lesson.

What does reflection look like within a mathematics lesson, and when should it happen?Reflection can take many forms, and is often dependent on the age and abilities of your students. For example, young students may not be able to write fluently, so verbal reflection is more appropriate and can save time. Verbal reflections, regardless of the age of the student, can be captured on video and used as evidence of learning. Video reflections can also be used to demonstrate learning during parent/teacher conferences. Another reflection strategy for young students could be through the use of drawings. Older students could keep a mathematics journal, which is a great way of promoting non-threatening, teacher and student dialogue. Reflection can also occur amongst pairs or small groups of students.

How do you promote quality reflection? The use of reflection prompts is important. This has two benefits: first, they focus students’ thinking and encourage depth of reflection; and second, they provide information about student misconceptions that can be used to determine the content of the following lessons. Sometimes teachers fall into the trap of having a set of generic reflection prompts. For example, prompts such as “What did you learn today?”, “What was challenging?” and “What did you do well?” do have some value, however if they are over-used, students will tend to provide generic responses. Consider asking prompts that relate directly to the task or mathematical content.

An example of powerful reflection prompts is the REAL Framework, from Munns and Woodward (2006). Although not specifically written for mathematics, these reflection prompts can be adapted. One great benefit of the prompts is that they fit into the three dimensions of engagement: operative, affective, and cognitive. The following table represents reflection prompts from one of four dimensions identified by Munns and Woodward: conceptual, relational, multidimensional and unidimensional.

(Munns & Woodward, 2006)

Finally, student reflection can be used to promote and assess the proficiencies (Working Mathematically in NSW) from the Australian Curriculum: Mathematics as well as mathematical concepts. It can be an opportunity for students to communicate mathematically, use reasoning, and show evidence of understanding. It can also help students make generalisations and consider how the mathematics can be applied elsewhere.

How will you incorporate reflection into your mathematics lessons? Reflection can occur at any time throughout the lesson, and can occur more than once per lesson. For example, when students are involved in a task and you notice they are struggling or perhaps not providing appropriate responses, a short, sharp verbal reflection would provide opportunity to change direction and address misconceptions. Reflection at the conclusion of a lesson consolidates learning, and also assists students in recognising the learning that has occurred. They are more likely to remember their learning when they’ve had to articulate it either verbally or in writing.

And to conclude, some **reflection prompts for teachers** (adapted from the REAL Framework):

- How have you encouraged your students to think differently about their learning of mathematics?
- What changes to your pedagogy are you considering to enhance the way you teach mathematics?
- Explain how your thinking about mathematics teaching and learning is different today from yesterday, and from what it could be tomorrow?

References

Munns, G., & Woodward, H. (2006). Student engagement and student self-assessment: the REAL framework. *Assessment in Education, 13*(2), 193-213.

## One thought