Tag Archives: Professional learning

Improving primary mathematics: The challenge of curriculum

Arguably one of the biggest challenges for most primary teachers is the struggle to address the many components of the mathematics curriculum within the confines of a daily timetable. How many times have you felt there just isn’t enough time to teach every outcome and every ‘dot point’ in the entire mathematics curriculum for your grade in one year? It is my belief that one of the biggest issues in mathematics teaching at the moment stems from misconceptions about what and how we’re supposed to be teaching, regardless of which curriculum or syllabus you are following.  The way we, as teachers, perceive the content and intent of our curriculum influences whether students engage and achieve success in mathematics. The way we experienced the curriculum when we were at school also influences how mathematics is taught in our own classrooms.

This struggle arises partially from the common perception that every outcome (in NSW) or Content Descriptor (from the Australian Curriculum) must be addressed as an individual topic, often because of the way the syllabus/curriculum is organised (this is not a criticism – the content has to be organised in a logical manner). This often results in mathematical concepts being taught in an isolated manner, without any real context for students. A result of this is a negative impact on student engagement. Students fail to see how the mathematics relates to their real lives and how it is applied to various situations. They also fail to see the connections amongst and within the mathematical concepts.

Imagine if you could forget everything you remember about teaching and learning mathematics from when you were at school. Now think about the three content strands in our curriculum: Number and Algebra, Measurement and Geometry, and Statistics and Probability. Where are the connections within and amongst these strands? If you could, how would you draw a graphical representation of all the connections and relationships? Would your drawing look like a tangled web, or would it look like a set of rows and columns? I’m hoping it would like more like a tangled web! Try this exercise – take one strand, list the content of that strand, and then list how that content applies to the other two strands. If you can see these connections, now consider why we often don’t teach that way. How can you teach mathematics in a different way that will allow students to access rich mathematical relationships rather than topics in isolation? How can we make mathematics learning more meaningful for our students so that maths makes sense?

This leads me to my second point and what I believe is happening in many classrooms as a result of misunderstanding the intention of the mathematics curriculum. If students are experiencing difficulties or need more time to understand basic concepts, you don’t have to cover every aspect of the syllabus. It is our responsibility as teachers to ensure we lay strong foundations before continuing to build – we all know mathematics is hierarchical – if the foundations are weak, the building will collapse. If students don’t understand basic concepts such as place value, it doesn’t make sense to just place the ‘strugglers’ in the ‘bottom’ group and move on to the next topic.

We need to trust in our professional judgement and we need to understand that it’s perfectly okay to take the time and ensure ALL learners understand what they need to before moving on to more complex and abstract mathematics. It most definitely means more work for the teacher, and it also means that those in positions of leadership need to trust in the professional judgement of their teachers. Most importantly, it means that we are truly addressing the needs of the learners in front of us – the most important stakeholders in education.

 

Beach Towels and Pencil Cases: Interesting, Inquiry-based Mathematical Investigations

In several of my previous posts I discussed the importance of promoting critical thinking in mathematics teaching and learning. I’ve also discussed at length various ways to contextualise mathematics to provide opportunities for students to apply prior learning, build on concepts, and recognise the relevance of mathematics in our world. In addition, investigations provide excellent assessment material – usually when we assess in mathematics we ask for specific answers. In investigations, students can show us a range of mathematics, often beyond our expectations. They are also a great way to integrate other subjects areas such as literacy and science.

In this blog post I am going to share some ideas for open ended and inquiry-based mathematical tasks based on two items that most students would be familiar with – beach towels and pencil cases!

Pencil Cases

Let’s start with pencil cases. It’s the start of the 2018 school year next week and many children begin each school year with brand new stationery, in brand new pencil cases. Even if they’re not brand new, most children have a pencil case. I came across an interesting article relating to pencil cases a few days ago, and I think this could be used to spark interest and curiosity. The article can be found here:

https://honey.nine.com.au/2018/01/19/14/35/pencil-case-missing-letter

Screen Shot 2018-01-25 at 5.20.40 pm

Short activities:

  1. Who has the heaviest pencil case? Compare the mass of your pencil case with the pencil cases of your group members. Who has the lightest? Estimate the mass, then use scales to test your estimations. How close were the estimations?
  2. Estimate, then calculate the surface area of your pencil case. What units are the most appropriate to use? Explain how you measured the surface area.
  3. Faber Castell is a famous brand of pencils. Investigate the history of Faber Castell and illustrate this on a timeline.
  4. According to the Faber Castell website, it takes one ‘pinus caribaea’ tree 14 years to be ready to be used to manufacture pencils. Each tree can produce 2500 pencils. If one tree was allocated to each school, how many pencils do you think each child in your school might receive? How did you work this out?
  5. If each of the 2,500 pencils were sold for $1.50, how much do you think the entire tree be worth in pencil sales?

Investigations:

  1. At the beginning of each school year many children get brand new pens and pencils to take to school. Investigate how much it would cost to buy your stationary. Which shop offers the best value for money?
  2. Some pencil cases like the one in the photo and in the Missing Letter article have small clear plastic pockets to put your name in. If a pencil case has only eight pockets, is this enough for your name? Investigate the length of names in your class. What would be the average length name in your class? What else could you explore about names?
  3. The pencil case in the picture came with some pre-printed letters for the clear pockets. There are more of some letters than others. Investigate the most common letter occurring in students’ Christian names. Do you think it would be the same in all countries?
  4. Design and make a pencil case to suit your individual stationery needs. Write about the mathematics you use to do this.

Extension Activities:

  1. Design a new and improved pencil and explain the changes you have made.
  2. Design, justify, and create a marketing campaign for a new, ‘miracle’ pen.
  3. Research and discuss the following statement: “To save the environment, wooden pencils will no longer be manufactured”.

Promoting Curiosity and Wonder

Mathematical investigations should promote curiosity and wonder. The pencil case questions and investigations are open, yet provide some structure and support. They give enough detail to communicate the type of mathematics required to complete the task or investigation. Students should eventually be able to feel confident enough to come up with their own questions and follow their own path in terms of the mathematics they access and apply, just like mathematicians do.

Round Beach Towels?

In the last year or two a new beach towel has emerged onto the beach towel scene. It’s round. Now this idea immediately caused some concern for my mathematical brain. I had questions.

  • Is there more fabric in a round beach towel than a regular, rectangular beach towel?
  • Is there more fringe, and wouldn’t this make the towel more expensive?
  • How does one fold a round beach towel?
  • Could you wrap a round beach towel around you the way you wrap a rectangular beach towel?
  • How much more area on the beach gets taken up by people spreading round beach towels?
  • Does this mean less people get to lay on the sand?
  • Could you design a round beach towel that has a tessellating pattern?IMG_4837

All of the questions above can be explored using a range of mathematics…I wonder how many more questions your students could come up with?

Tips for Teachers: Setting up Your Students for Mathematical Success

Many children begin the new school year with feelings of fear and anxiety. Will they like their new teacher or teachers? Will the work be difficult? What will the homework be like? As you prepare programming and planning for a new teaching year and new students, give some thought to the strategies and activities you and your students can do in the first few weeks of term to ensure everyone gets the most out of their mathematics lessons for the entire school year. Think about what you can do differently this year to make your work more engaging for both you and your students. The following are some ideas to consider.

  1. Be a positive mathematical role model

I’m sure this won’t come as a surprise, but there are teachers in our schools who actually don’t like maths and don’t like teaching it. Why is this a problem? Student know! This knowledge perpetuates the common misconception that it’s okay to dislike mathematics, and worse still, it’s okay to be considered ‘bad’ at maths.  Unless the teacher is an award-winning actor or actress, it’s really difficult to hide how you feel about a subject – it’s obvious in body language, tone of voice and of course, the way you teach the subject and the resources you use. If you know someone like this, suggest they seek some support from a colleague or colleagues. Often the reason a person dislikes mathematics is related to a lack of confidence.

  1. Get to know your students as learners of mathematics

The foundation of student engagement requires an understanding of students as learners, in other words, the development of positive pedagogical relationships (Attard, 2014). Positive relationships require teachers to understand how their students learn, and where and when they need assistance. It’s also important to provide opportunities for ongoing interactions between you and your students as well as amongst your students.

Another way to get to know your students as learners is to use existing data. For example, if your school takes part in external testing such as PAT, you can use this data as a guide. However, keep in mind that things change quickly when children are young – what they knew or understood three months ago may be very different after a long summer holiday.

A great activity to do in the very first few maths classes of the year is to ask your students to write or create a ‘Maths Autobiography’. If required, provide the students with some sentence starters such as “I think maths is…” “The thing I like best about maths is…” “The thing or things that worry me about maths is…” They could do this in different formats:

  • In a maths journal
  • Making a video
  • Using drawings (great for young children – a drawing can provide lots of information)
  1. Start off on a positive note

Have some fun with your maths lessons. I would strongly recommend that you don’t start the year with a maths test! If you want to do some early assessment, consider using open-ended tasks or some rich mathematical investigations. Often these types of assessments will provide much deeper insights into the abilities of your students. You can even use some maths games (either concrete or digital) to assess the abilities of your students.

A great maths activity for the first lesson of the year is getting-to-know-you-mathematically, where students use a pattern block and then need to go on a hunt to find other students who have specific mathematical attributes. Encourage your students to find someone different for every attribute on the list, and change the list to suit the age and ability of your students. For example, in the younger years you could use illustrations and not words. In the older years, you could make the mathematics more abstract.

  1. Take a fresh look at the curriculum

Even if you’ve been teaching for many years, it’s always good to take a fresh new look at the curriculum at the start of each year. Consider how the Proficiencies or Working Mathematically processes can be the foundation of the content that you’re teaching. For example, how can you make problem solving a central part of your lessons?
Take a close look at the General Capabilities. They provide a perfect foundation for contextual, relevant tasks that allow you to teach mathematics and integrate with other content areas.

  1. Consider the resources you use: Get rid of the worksheets!

Think about using a range of resources in your mathematics teaching. Regardless of their age or ability, children benefit from using concrete manipulatives. Have materials available for students to use when and if they need them. This includes calculators in early primary classrooms, where students can explore patterns in numbers, place value and lots of other powerful concepts using calculators.

Children’s literature is also a great resource. A wonderful book to start off the year is Math Curse by Jon Scieska and Lane Smith. Read the book to your students either in one sitting or bit by bit. There are lots of lesson ideas within the pages. Ask your students to write their own maths curse. It’s a great way to illustrate that mathematics underpins everything we do! It’s also a great way to gain insight into how your students view mathematics and what they understand about mathematics.

  1. How will you use technology in the classroom?

If you don’t already integrate technology into your mathematics lessons, then it’s time to start. Not only is it a curriculum requirement, it is part of students’ everyday lives – we need to make efforts to link students’ lives to what happens in the classroom and one way to do that is by using technology. Whether it’s websites, apps, YouTube videos, screencasting, just make sure that you have a clear purpose for using the technology. What mathematics will your students be learning or practicing, and how will you assess their learning?

  1. Reach out to parents

As challenging as it may be, it’s vital that parents play an active role in your students’ mathematical education. They too may suffer from anxiety around mathematics so it’s helpful to invite them into the classroom or hold mathematics workshops where parents can experience contemporary teaching practices that their students are experiencing at school. Most importantly, you need to communicate to parents that they must try really hard to be positive about mathematics!

These are just a few tips to begin the year with…my next blog post will discuss lesson structure. In the meantime, enjoy the beginning of the school year and:

Be engaged in your teaching.

Engaged teachers = engaged students.

 

 

Attard, C. (2014). “I don’t like it, I don’t love it, but I do it and I don’t mind”: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1-14.

Beyond Monday’s Maths Class: Making the Most of Teacher PD

Last weekend I travelled interstate to attend a professional development day for teachers of mathematics. It was a good day, with lots of ideas shared and great enthusiasm from the 500+ audience. The presenter was well informed and, in fact, created quite a lot of hype due to her international reputation. Everyone went home happy and the word on Twitter was that Monday’s maths lessons were going to be different. Fantastic! But what about Tuesday’s lesson, and what about next week’s, next month’s, and next year’s lessons? What about the lessons of other teachers in the school?

How do you make the most of professional development?

Too often teachers attend PD sessions, get enthusiastic, try a few new things, but quickly get bogged down in the day-to-day challenges of life in a busy school and the demands of administration and curriculum authorities. How can you translate the underlying philosophy being promoted in the professional development sessions into sustainable change that can be shared amongst colleagues to improve and transform mathematics teaching and learning?

PD is expensive, and it’s important that opportunities aren’t wasted. I’ve been talking and writing a lot recently about promoting critical thinking in the mathematics classroom. It’s equally as important for teachers to engage critically with professional development. The following list contains a few thoughts that might help teachers get the most out of PD opportunities.

  1. Choose the right PD

Do a little research on the person presenting the PD. What are their credentials? Are they a self-proclaimed expert or do they have an established reputation? A simple Google search should reveal some insights, and, if the presenter is an academic, you could search Google Scholar for some of their academic publications. Spending time researching the presenter’s background can save you from attending a PD session that may not be right for you, and can provide some good research background should you choose to go ahead with the session. You also need to consider what you want out of a PD session. If you want a ‘bag of tricks’ in the form of a handful of ready to go activities, then you probably shouldn’t be wasting your school’s money. Rather, think about PD that is going to cause you to think deeply about your practice, and have a long-term effect on students’ educational outcomes.

  1. Does the presenter understand the Australian school context and curriculum?

When you attend PD, you expect that the presenter is aware of the Australian school context, and more importantly, the Australian Curriculum. This assists you, the teacher, in applying the learning to your practice, and also makes the content of the PD more relevant to you and your students.

  1. Understand the structure of the PD session

Before you commit to attending a PD session, ensure you understand what is going to happen in that session. Nobody likes sitting down and being lectured to for hours on end, nor do you want to listen to a presenter talk about themselves for an entire day! Look for presentations that are interactive and allow participants to apply theory to practical activities. If we are going to ask our students to do something differently, we need to experience it ourselves first. It’s also a better way of retaining information.

  1. Active Participation

When you’re at the PD session, don’t be afraid to ask questions. It’s also important to think critically about the information you are receiving. Presenters are usually very happy to answer questions that spark discussion – this often results in deeper learning, and better value for your school’s money! If the presenter doesn’t welcome questions, this is a sign that they may not have expert knowledge.  During the PD session it’s important that you participate in any activities – there’s usually a good reason a presenter has asked you to engage in a task. Active participation gives insight into the student experience and possible challenges, and it’s a great way to make links between theory and practice.

  1. Use the session as a networking opportunity

Often one of the most valuable aspects of professional development sessions is the opportunity to connect with teachers from other schools. It’s a great opportunity to discuss practice, students and school procedures. Networks developed at PD sessions can be maintained easily using tools such as LinkedIn, Twitter, and Facebook.

  1. Reflection

Before you leave your PD session, pause and consider what you have learned (a good presenter will actually give you opportunity to reflect). Think about how you might apply what you have learned (not just the activities, but the educational philosophy underpinning them) to your classroom, and don’t limit yourself to just replicating the activities. What are the underlying messages? How can you use those messages to adapt your practice? What will be different in the way that you plan and implement lessons? It doesn’t have to be a big change. Often subtle differences have huge effects.

  1. Sustainability: Sharing the Learning

Finally, it’s important to share the learning. It’s difficult to sustain any kind of change that will have ongoing benefit for students if it’s not supported by others in your school. This may not be easy, but small changes are better than no changes. Sometimes it’s a good idea to try out new things in your own class first, then use evidence of your success to convince others.

When it comes to PD, one of the most important things to remember is the reason we do what we do. We want our students to be the best they can, and when it comes to mathematics, we want to give them confidence, skill, passion and excitement that will ensure they continue to study and use mathematics beyond their school education.

Promoting Student Reflection to Improve Mathematics Learning

Critical reflection is a skill that doesn’t come naturally for many students, yet it is one of the most important elements of the learning process. As teachers, not only should we practice what we preach by engaging in critical reflection of our practice, we also need to be modelling critical reflection skills to our students so they know what it looks like, sounds like, and feels like (in fact, a Y chart is a great reflection tool).

How often do you provide opportunities for your students to engage in deep reflection of their learning? Consider Carol Dweck’s research on growth mindset. If we want to convince our students that our brains have the capability of growing from making mistakes and learning from those mistakes, then critical reflection must be part of the learning process and must be included in every mathematics lesson.

What does reflection look like within a mathematics lesson, and when should it happen?Reflection can take many forms, and is often dependent on the age and abilities of your students. For example, young students may not be able to write fluently, so verbal reflection is more appropriate and can save time. Verbal reflections, regardless of the age of the student, can be captured on video and used as evidence of learning. Video reflections can also be used to demonstrate learning during parent/teacher conferences. Another reflection strategy for young students could be through the use of drawings. Older students could keep a mathematics journal, which is a great way of promoting non-threatening, teacher and student dialogue. Reflection can also occur amongst pairs or small groups of students.

How do you promote quality reflection? The use of reflection prompts is important. This has two benefits: first, they focus students’ thinking and encourage depth of reflection; and second, they provide information about student misconceptions that can be used to determine the content of the following lessons. Sometimes teachers fall into the trap of having a set of generic reflection prompts. For example, prompts such as “What did you learn today?”, “What was challenging?” and “What did you do well?” do have some value, however if they are over-used, students will tend to provide generic responses. Consider asking prompts that relate directly to the task or mathematical content.

An example of powerful reflection prompts is the REAL Framework, from Munns and Woodward (2006). Although not specifically written for mathematics, these reflection prompts can be adapted. One great benefit of the prompts is that they fit into the three dimensions of engagement: operative, affective, and cognitive. The following table represents reflection prompts from one of four dimensions identified by Munns and Woodward: conceptual, relational, multidimensional and unidimensional.

Picture1(Munns & Woodward, 2006)

Finally, student reflection can be used to promote and assess the proficiencies (Working Mathematically in NSW) from the Australian Curriculum: Mathematics as well as mathematical concepts. It can be an opportunity for students to communicate mathematically, use reasoning, and show evidence of understanding. It can also help students make generalisations and consider how the mathematics can be applied elsewhere.

How will you incorporate reflection into your mathematics lessons? Reflection can occur at any time throughout the lesson, and can occur more than once per lesson. For example, when students are involved in a task and you notice they are struggling or perhaps not providing appropriate responses, a short, sharp verbal reflection would provide opportunity to change direction and address misconceptions. Reflection at the conclusion of a lesson consolidates learning, and also assists students in recognising the learning that has occurred. They are more likely to remember their learning when they’ve had to articulate it either verbally or in writing.

And to conclude, some reflection prompts for teachers (adapted from the REAL Framework):

  • How have you encouraged your students to think differently about their learning of mathematics?
  • What changes to your pedagogy are you considering to enhance the way you teach mathematics?
  • Explain how your thinking about mathematics teaching and learning is different today from yesterday, and from what it could be tomorrow?

 

References

Munns, G., & Woodward, H. (2006). Student engagement and student self-assessment: the REAL framework. Assessment in Education, 13(2), 193-213.

 

 

 

 

When a Maths Curse is a Good Curse!

In one of my previous posts I wrote about the use of children’s literature to encourage rich mathematical investigations and improve student engagement with mathematics. One of my favourite books, Math Curse by John Szieska and Lane Smith, is described in the blog post as a great way to engage reluctant learners. Even better, Math Curse encourages children (and their teachers) to see the mathematics that is embedded in every aspect of our lives. In this post I am going to share some student work from a Grade 3 classroom. In this classroom, the teacher read the book to the students before challenging them create their own class maths curse. The children took their own photographs, and working in small groups, they came up with a range of mathematical problems and investigations, which they then gave to other groups to solve.

Here are some of the photos with their accompanying questions:

Beyblades:

  1. If one of the beyblades spins for 2 minutes and 31 seconds and the other one spins for 1 minute and 39 seconds what is the difference between the two times?
  2. If one of the beyblades spins for 1 minute and 1 second and another spins for 78 seconds, which beyblade spun for the longest and by how long?

Hair:

  1. If there are 31 people in the class (10 boys and 21 girls) and all of them have hair that is 30cm long. Half of the boys cut 10cm off their hair, the other half cut 20cm off their hair. How long is the classes hair now altogether? How long was it before? How much hair has been cut altogether?
  2. Check your friend’s hair. Estimate how long it is when it is out, how long it is when it is in a ponytail, and how long it is when it is in a braid. List some different ways you could check if your estimate is accurate? What are the potential problems with your methods?
  3. I’m 9 years old. I had really long hair for 6 years, then I cut it. How long did I have short hair for?
  4. I have 5 friends that are girls and 2 friends that are boys. All 5 girls have hair length of 50cm. The boys both have different lengths of hair. The 1st boy has 30cm of hair, the second has 25cm of hair. What is the difference between the 1st boy and the girls and the 2nd boy and the girls?

Birthday Balloons:

  1. Write down the dates of important celebrations. If you add all the dates together, what is the value of their numbers?
  2. How many days are there in 6 years?
  3. If everyone’s birthday occurred every three years (starting the year you are born) what years would your birthday fall on?
  4. If Lisa and Jane went on a holiday every 2 months, how many holidays could they take in a year?
  5. If you could rearrange the seasons, what months would you choose to be Spring? Why?
  6. What is the most popular letter in the days of the months?
  7. Why do you think there are 4 seasons in a year?

From Problem Solving to Problem Posing

What is the purpose of getting students to write mathematical problems? First of all, the problems give us good insight into whether students recognise mathematical situations, and whether they understand where, how, and what mathematics is applied in day to day situations. An added bonus is that the students are highly engaged because they have ownership of the mathematics they are generating, the topics they choose are of interest to them, and stereotypical perceptions of school mathematics are disrupted.

Student Reflection

The students who wrote the examples above completed a structured written reflection following the sequence of designing and solving each others’ maths curses. Here are some of reflection prompts and a sample of responses:

What did you enjoy about today’s learning?

“working with my team”
“working at the problems for a long time and then finally getting them after a long, hard discussion”

“solving questions that my friends wrote”

“I felt challenged and I learnt more about what maths is”

“working with my group, choosing our own questions and learning something new”

“I liked the chess card the best because we had to solve it together and use problem solving”

“having a go at tricky questions even if i got them wrong”

Did you learn anything new?

“how to work things out in different ways”

“working in groups helps you learn more skills”

“not every question uses just one skill like addition, division, multiplication or subtraction”

“when I am challenged I learn more”

“Maths is not always easy”

“how to work together”

“Everyone in the group has different responses so we needed proof to figure out the right one”

What surprised you about this task?

“It surprised me how hard my own questions were”

“I didn’t know that we could come up with so many interesting questions”
“I got a shock! We had to research to solve some problems, Adam even taught me how to add a different way”

“I got some questions wrong “

“It was hard but if we put our brains into gear we could figure it out”

“I was able to play while doing maths” 

Using activities such as this provides multiple benefits for students. Contextualising the mathematics using students’ interests highlights the relevance of the curriculum, improves student engagement, and makes mathematics meaningful, fun and engaging!

Australia’s Declining Maths Results: Who’s Responsible?

Once again, mathematics education is in the spotlight. The most recent TIMMS  and PISA results highlight a decline in Australia’s mathematics achievement when compared to other countries, which will no doubt perpetuate the typical knee jerk reactions of panic and blame. So, what are we doing about this decline? Who’s responsible? Typically, the first to get the blame for anything related to a decline in mathematics are teachers, because they work at the coal face, they spend significant amounts of time with students, and they’re an easy target. But shouldn’t we, as a society that considers it acceptable to proudly claim “I’m not good at maths” (Attard, 2013), take some portion of the blame?

Numeracy and Mathematics education is everyone’s business

As a society, we all need to take some responsibility for the decline in mathematics achievement and more importantly, we all need to collaborate on a plan to change the decline into an incline. From my perspective, there are three groups of stakeholders who need to work together: the general community, the policy makers and school systems that influence and implement the policies, and the teachers.

Let’s start with the general community. It seems everybody’s an expert when it comes to mathematics education because we all experienced schooling in some form. Many say: “I survived rote learning – it didn’t hurt me”. The world has changed, access to information and technology has improved dramatically, and the traditional ‘chalk and talk’ practices are no longer appropriate in today’s classrooms. Many hold a limited view of school mathematics as drill and practice of number facts and computation. Although it’s important that children build fluency, it’s simply not enough. We must promote problem solving and critical thinking within relevant contexts – making the purpose of learning mathematics visible to students. It is, after all, problem solving that forms the core of NAPLAN, TIMSS and PISA tests.

The community pressure for teachers to use text books and teach using outdated methods, along with a crowded curriculum and an implied requirement for teachers to ‘tick curriculum boxes’ causes significant tensions for teachers, particularly in the primary school where they are required to be experts at every subject. If we consider the limited number of hours allocated to mathematics education in teacher education degrees compared with the expectations that all primary teachers suddenly become experts on graduation, then we should understand that teachers need continued support beyond their tertiary education to develop their skills. In addition, rather than focusing on students’ learning, the crowded curriculum  leads them to focus on getting through the curriculum (http://v7-5.australiancurriculum.edu.au/mathematics/curriculum/f-10?layout=2#page=1) and this often leads to a ‘back to basics’ approach of text books, work sheets and lots of testing that does not create students who can problem solve, problem pose and problem find.

This is where the policy makers and school systems must come into play by providing support for high quality and sustained professional learning and encouraging primary teachers to gain expertise as specialist mathematics teachers. We already have a strong curriculum that promotes problem solving and critical thinking both through the Proficiencies and through the General Capabilities. The General Capabilities provide teachers with the opportunity to embed mathematics in contextual, relevant and purposeful mathematics. However, teachers need to be supported by all stakeholders, the community and the policy makers, to use these tools and focus less on the teaching of mathematics as a series of isolated topics that make little sense to students.

What can we do?

There are no easy solutions, but one thing is clear. We need to disrupt the stereotypical perceptions of what school mathematics is and how it should be taught. We need to support our teachers and work with them rather than against them. Let’s band together and make some changes that will ultimately benefit the most important stakeholders of all, the children of Australia.

 

 

Attard, C. (2013). “If I had to pick any subject, it wouldn’t be maths”: Foundations for engagement with mathematics during the middle years. Mathematics Education Research Journal, 25(4), 569-587.