Category Archives: Professional development

Tips for beginning primary teachers: What’s in your maths toolbox?

If you’re an early career teacher, chances are you spend lots of your spare time looking for good maths resources. Some of you may have your own class, while others are beginning their careers as a relief teacher, having to move from one class to another, and often between different schools. Many teachers who are starting out have to build their toolbox of resources from nothing. Where do you begin? How can you develop a bank of activities that suits lots of different levels and abilities, and engages children of diverse abilities?

One of the first things I would recommend would be to invest in a small range of materials that allow you to implement some simple tasks that could then be expanded into interesting and worthwhile mathematical investigations. For example, if you purchase around ten sets of playing cards (go to a cheap two dollar store), you could learn a few basic games (Snap, Making 10, Playing with Place Value – see my book Engaging Maths: Exploring Number) that could then be differentiated according to the students you are teaching. A simple game of Making 10 could be used from Grade 1 all the way to Grade 6 by simply changing the rules.

Other materials that are a ‘must have’ for beginning teachers are dice and dominoes. There are many simple investigations that could lead from simple explorations with these materials. For example, use the dice to explore probability or play a game of Greedy Pig. Play a traditional game of dominoes before adding a twist to it, or simply ask students to sort the dominoes (students have to select their own criteria for sorting)– an interesting way to gain insight into students’ mathematical thinking and a great opportunity for using mathematical language. Once students have sorted the dominoes conduct an ‘art gallery tour’ and ask other students to see if they can work out how others have sorted out their dominoes. Photograph the sorting and display then on an Interactive Whiteboard for a whole class discussion and reflection…the list goes on!

Another ‘must have’ for beginning teachers is a bank of good quality resource books. Don’t fall into the trap of purchasing Black Line Masters or books full of worksheets to photocopy. You don’t want your students to be disengaged! Books such as my Engaging Maths series ( ), or any of Paul Swan’s books or resources ( are a great place to start. Explore some of the excellent free resources available online such as and, but do be aware that some resources produced outside of Australia will need to adapted for the Australian Curriculum: Mathematics.

In my research on student engagement, I found that students would remember what they would recall as a ‘good’ mathematics lesson for a very long period of time. In fact, some of the students in my PhD study talked about a ‘good’ mathematics lesson two years after it had taken place. Whether you are lucky enough to have your own class or have to begin your career as a relief teacher moving from class to class, you can make an impact on the students in your care and the way the view mathematics by being prepared with your ‘toolbox’ of engaging and worthwhile activities.


Tips for Teachers: Critical ingredients for a successful mathematics lesson

What are the ingredients for an effective mathematics lesson? Teachers are continually faced with a range of advice or ideas to improve their mathematics lessons and often this just creates confusion. It’s a little bit like being a cook. New recipes appear online and in cookbooks on bookstore shelves, but often they’re just adaptations of classic recipes that have been around before, their foundation ingredients are tried and tested, and often evidence based. There are always the staple ingredients and methods that are required for the meal to be successful.

The following is a list of what I consider to be important ingredients when planning and teaching an effective mathematics lesson. The list (or recipe) is split into two parts: lesson planning and lesson structure.

Lesson planning:

  • Be clear about your goal. What exactly do you want your students to learn in this lesson? How are you going to integrate mathematical content with mathematical processes? (The proficiencies or Working Mathematically components) Will you consider the General Capabilities in your planning?
  • Know the mathematics. If you don’t have a deep understanding of the mathematics or how students learn that aspect of mathematics, how can you teach it effectively? Where does the mathematics link across the various strands within the mathematics curriculum?
  • Choose good resources. Whether they are digital or concrete materials, make sure they are the right ones for the job. Are they going to enhance students’ learning, or will they cause confusion? Be very critical about the resources you use, and don’t use them just because you have them available to you!
  • Select appropriate and purposeful tasks. Is it better to have one or two rich tasks or problems, or pages of worksheets that involve lots of repetition? Hopefully you’ve selected the first option – it is better to have fewer, high quality tasks rather than the traditional worksheet or text book page. You also need to select tasks that are going to promote lots of thinking and discussion.
  • Less is more. We often overestimate what students will be able to do in the length one lesson. We need to make sure students have time to think, so don’t cram in too many activities.
  • You don’t have to start and finish a task in one lesson. Don’t feel that every lesson needs to be self-contained. Children (and adults) often need time to work on complex problems and tasks – asking students to begin and end a task within a short period of time often doesn’t give them time to become deeply engaged in the mathematics. Mathematics is not a race!

Lesson Structure:

  • Begin with a hook. How are you going to engage your students to ensure their brains are switched on and ready to think mathematically from the start of each lesson? There are lots of ways to get students hooked into the lesson, and it’s a good idea to change the type of hook you use to avoid boredom. Things like mathematically interesting photographs, YouTube clips, problems, newspaper articles or even a strategy such as number busting are all good strategies.
  • Introduction: Make links to prior learning. Ensure you make some links to mathematics content or processes from prior learning – this will make the lesson more meaningful for students and will reassure anxious students. Use this time to find out what students recall about the particular topic – avoid being the focus of attention and share the lesson with students. Talk about why the topic of the lesson is important – where else does it link within the curriculum, and beyond, into real life?
  • Make your intentions clear. Let students know what they’re doing why they’re doing it. How and where is knowing this mathematics going to help them?
  • Body: This is a good time for some collaboration, problem solving and mathematical investigation. It’s a time to get students to apply what they know, and make links to prior learning and across the mathematics curriculum. This is also a time to be providing differentiation to ensure all student needs are addressed.
  • Closure: This is probably the most important time in any mathematics lesson. You must always include reflection. This provides an opportunity for students to think deeply about what they have learned, to make connections, and to pose questions. It’s also a powerful way for you, the teacher, to collect important evidence of learning. Reflection can be individual, in groups, and can be oral or written. It doesn’t matter, as long as it happens every single lesson.

There are many variables to the ingredients for a good mathematics lesson, but most importantly, know what and how you are teaching, provide opportunities for all students to achieve success, and be enthusiastic and passionate about mathematics!

Beach Towels and Pencil Cases: Interesting, Inquiry-based Mathematical Investigations

In several of my previous posts I discussed the importance of promoting critical thinking in mathematics teaching and learning. I’ve also discussed at length various ways to contextualise mathematics to provide opportunities for students to apply prior learning, build on concepts, and recognise the relevance of mathematics in our world. In addition, investigations provide excellent assessment material – usually when we assess in mathematics we ask for specific answers. In investigations, students can show us a range of mathematics, often beyond our expectations. They are also a great way to integrate other subjects areas such as literacy and science.

In this blog post I am going to share some ideas for open ended and inquiry-based mathematical tasks based on two items that most students would be familiar with – beach towels and pencil cases!

Pencil Cases

Let’s start with pencil cases. It’s the start of the 2018 school year next week and many children begin each school year with brand new stationery, in brand new pencil cases. Even if they’re not brand new, most children have a pencil case. I came across an interesting article relating to pencil cases a few days ago, and I think this could be used to spark interest and curiosity. The article can be found here:

Screen Shot 2018-01-25 at 5.20.40 pm

Short activities:

  1. Who has the heaviest pencil case? Compare the mass of your pencil case with the pencil cases of your group members. Who has the lightest? Estimate the mass, then use scales to test your estimations. How close were the estimations?
  2. Estimate, then calculate the surface area of your pencil case. What units are the most appropriate to use? Explain how you measured the surface area.
  3. Faber Castell is a famous brand of pencils. Investigate the history of Faber Castell and illustrate this on a timeline.
  4. According to the Faber Castell website, it takes one ‘pinus caribaea’ tree 14 years to be ready to be used to manufacture pencils. Each tree can produce 2500 pencils. If one tree was allocated to each school, how many pencils do you think each child in your school might receive? How did you work this out?
  5. If each of the 2,500 pencils were sold for $1.50, how much do you think the entire tree be worth in pencil sales?


  1. At the beginning of each school year many children get brand new pens and pencils to take to school. Investigate how much it would cost to buy your stationary. Which shop offers the best value for money?
  2. Some pencil cases like the one in the photo and in the Missing Letter article have small clear plastic pockets to put your name in. If a pencil case has only eight pockets, is this enough for your name? Investigate the length of names in your class. What would be the average length name in your class? What else could you explore about names?
  3. The pencil case in the picture came with some pre-printed letters for the clear pockets. There are more of some letters than others. Investigate the most common letter occurring in students’ Christian names. Do you think it would be the same in all countries?
  4. Design and make a pencil case to suit your individual stationery needs. Write about the mathematics you use to do this.

Extension Activities:

  1. Design a new and improved pencil and explain the changes you have made.
  2. Design, justify, and create a marketing campaign for a new, ‘miracle’ pen.
  3. Research and discuss the following statement: “To save the environment, wooden pencils will no longer be manufactured”.

Promoting Curiosity and Wonder

Mathematical investigations should promote curiosity and wonder. The pencil case questions and investigations are open, yet provide some structure and support. They give enough detail to communicate the type of mathematics required to complete the task or investigation. Students should eventually be able to feel confident enough to come up with their own questions and follow their own path in terms of the mathematics they access and apply, just like mathematicians do.

Round Beach Towels?

In the last year or two a new beach towel has emerged onto the beach towel scene. It’s round. Now this idea immediately caused some concern for my mathematical brain. I had questions.

  • Is there more fabric in a round beach towel than a regular, rectangular beach towel?
  • Is there more fringe, and wouldn’t this make the towel more expensive?
  • How does one fold a round beach towel?
  • Could you wrap a round beach towel around you the way you wrap a rectangular beach towel?
  • How much more area on the beach gets taken up by people spreading round beach towels?
  • Does this mean less people get to lay on the sand?
  • Could you design a round beach towel that has a tessellating pattern?IMG_4837

All of the questions above can be explored using a range of mathematics…I wonder how many more questions your students could come up with?

Tips for Teachers: Setting up Your Students for Mathematical Success

Many children begin the new school year with feelings of fear and anxiety. Will they like their new teacher or teachers? Will the work be difficult? What will the homework be like? As you prepare programming and planning for a new teaching year and new students, give some thought to the strategies and activities you and your students can do in the first few weeks of term to ensure everyone gets the most out of their mathematics lessons for the entire school year. Think about what you can do differently this year to make your work more engaging for both you and your students. The following are some ideas to consider.

  1. Be a positive mathematical role model

I’m sure this won’t come as a surprise, but there are teachers in our schools who actually don’t like maths and don’t like teaching it. Why is this a problem? Student know! This knowledge perpetuates the common misconception that it’s okay to dislike mathematics, and worse still, it’s okay to be considered ‘bad’ at maths.  Unless the teacher is an award-winning actor or actress, it’s really difficult to hide how you feel about a subject – it’s obvious in body language, tone of voice and of course, the way you teach the subject and the resources you use. If you know someone like this, suggest they seek some support from a colleague or colleagues. Often the reason a person dislikes mathematics is related to a lack of confidence.

  1. Get to know your students as learners of mathematics

The foundation of student engagement requires an understanding of students as learners, in other words, the development of positive pedagogical relationships (Attard, 2014). Positive relationships require teachers to understand how their students learn, and where and when they need assistance. It’s also important to provide opportunities for ongoing interactions between you and your students as well as amongst your students.

Another way to get to know your students as learners is to use existing data. For example, if your school takes part in external testing such as PAT, you can use this data as a guide. However, keep in mind that things change quickly when children are young – what they knew or understood three months ago may be very different after a long summer holiday.

A great activity to do in the very first few maths classes of the year is to ask your students to write or create a ‘Maths Autobiography’. If required, provide the students with some sentence starters such as “I think maths is…” “The thing I like best about maths is…” “The thing or things that worry me about maths is…” They could do this in different formats:

  • In a maths journal
  • Making a video
  • Using drawings (great for young children – a drawing can provide lots of information)
  1. Start off on a positive note

Have some fun with your maths lessons. I would strongly recommend that you don’t start the year with a maths test! If you want to do some early assessment, consider using open-ended tasks or some rich mathematical investigations. Often these types of assessments will provide much deeper insights into the abilities of your students. You can even use some maths games (either concrete or digital) to assess the abilities of your students.

A great maths activity for the first lesson of the year is getting-to-know-you-mathematically, where students use a pattern block and then need to go on a hunt to find other students who have specific mathematical attributes. Encourage your students to find someone different for every attribute on the list, and change the list to suit the age and ability of your students. For example, in the younger years you could use illustrations and not words. In the older years, you could make the mathematics more abstract.

  1. Take a fresh look at the curriculum

Even if you’ve been teaching for many years, it’s always good to take a fresh new look at the curriculum at the start of each year. Consider how the Proficiencies or Working Mathematically processes can be the foundation of the content that you’re teaching. For example, how can you make problem solving a central part of your lessons?
Take a close look at the General Capabilities. They provide a perfect foundation for contextual, relevant tasks that allow you to teach mathematics and integrate with other content areas.

  1. Consider the resources you use: Get rid of the worksheets!

Think about using a range of resources in your mathematics teaching. Regardless of their age or ability, children benefit from using concrete manipulatives. Have materials available for students to use when and if they need them. This includes calculators in early primary classrooms, where students can explore patterns in numbers, place value and lots of other powerful concepts using calculators.

Children’s literature is also a great resource. A wonderful book to start off the year is Math Curse by Jon Scieska and Lane Smith. Read the book to your students either in one sitting or bit by bit. There are lots of lesson ideas within the pages. Ask your students to write their own maths curse. It’s a great way to illustrate that mathematics underpins everything we do! It’s also a great way to gain insight into how your students view mathematics and what they understand about mathematics.

  1. How will you use technology in the classroom?

If you don’t already integrate technology into your mathematics lessons, then it’s time to start. Not only is it a curriculum requirement, it is part of students’ everyday lives – we need to make efforts to link students’ lives to what happens in the classroom and one way to do that is by using technology. Whether it’s websites, apps, YouTube videos, screencasting, just make sure that you have a clear purpose for using the technology. What mathematics will your students be learning or practicing, and how will you assess their learning?

  1. Reach out to parents

As challenging as it may be, it’s vital that parents play an active role in your students’ mathematical education. They too may suffer from anxiety around mathematics so it’s helpful to invite them into the classroom or hold mathematics workshops where parents can experience contemporary teaching practices that their students are experiencing at school. Most importantly, you need to communicate to parents that they must try really hard to be positive about mathematics!

These are just a few tips to begin the year with…my next blog post will discuss lesson structure. In the meantime, enjoy the beginning of the school year and:

Be engaged in your teaching.

Engaged teachers = engaged students.



Attard, C. (2014). “I don’t like it, I don’t love it, but I do it and I don’t mind”: Introducing a framework for engagement with mathematics. Curriculum Perspectives, 34(3), 1-14.

Teaching kids about maths using money can set them up for financial security

File 20171020 1082 atxtty.jpg?ixlib=rb 1.1Shutterstock

Catherine Attard, Western Sydney University

As the world of finance becomes more complex, most of us aren’t keeping up. In this series we’re exploring what it means to be financially literate.

One of the most common complaints children have about learning maths is its lack of relevance to their lives outside school. When they fail to see the importance of maths to their current and future lives, they often lose interest.

This results in opting out of mathematics study as soon as they can, and proclaiming they are “not good at maths”.

Financial literacy – learning about budgeting, saving, investing and basic financial decision making – taught by both parents and teachers can help keep them engaged.

Three strategies for teachers

The Australian Association of Mathematics Teachers promote the teaching of financial literacy through maths with the help of contemporary teaching and learning resources that reflect students’ interests. These include lesson plans, units of work, children’s literature, and interactive digital resources such as games.

A wide range of resources are available from websites such as MoneySmart and Financial Literacy Australia. These are an excellent way to begin teaching financial literacy concepts, with some units of work specifically designed with a mathematics focus. However, these units can and should be adjusted to suit the specific needs of the students in your classroom.

Additionally, teachers should consider using resources that are familiar to students’ everyday lives. These could include items that are in the news media, shopping catalogues, television commercials etc. Keep watch for interesting photographs or misleading advertisements. They are great for starting discussions about maths. Questions such as “is this really a good deal?”, “what is the best deal?” or even “what mathematics do we need to know and understand to work out if this advertisement is offering a bargain?” could begin discussions.

There are also a range of apps that could be used alongside maths and financial literacy explorations, including budgeting apps and supermarket apps such as TrackMySpend, Smart Budget, or My Student Budget Planner . If you like using picture books to introduce and teach concepts, the Money & Stuff website has an extensive list of books relating to financial literacy.

The money connection

One way to improve engagement with mathematics is for schools to teach it in ways that children are familiar with. Most children are familiar with money, and many are already consumers of financial services from a young age. Research has found that it’s not uncommon for children to have accounts with access to online payment facilities or to use mobile phones during the primary school years. It’s clear that financial literacy and mathematics skills would be beneficial when using such products.

Financial education programs for young people can be essential in nurturing sound financial knowledge and behaviour in students from a young age. Using real-life contexts involving financial literacy can help children learn a range of mathematical concepts and numeracy skills like lending and borrowing, budgeting, and interest rates. They are more likely to remember and understand what they have learned because they applied mathematics to something they’re interested in and something that they can use in their lives.

Research into the teaching of financial literacy combined with mathematics in primary schools shows how important it is for all children to understand the importance and value of money and recognise the maths that underpins consumer and financial literacy.

They also need to engage in real world projects and investigations relating to consumer and financial literacy to understand how mathematics is applied in everyday decisions that could influence life opportunities.

Shopping is a teaching opportunity for parents

Many young children don’t understand where money comes from. It’s important that they begin to develop some understanding of how our economy works, even from a young age. Research has found a pattern emerging where children whose parents talk to them about money develop an earlier understanding of its importance. They are also provided with more opportunities to deal with making decisions about money.

If you have young children in primary school, it’s a great time to start their financial literacy and mathematics education. There are plenty of opportunities when you are out shopping to include your child in discussions and decisions where appropriate, or explain the financial decisions you make on their behalf. Talk about the mathematics involved in financial decision-making. Where possible, encourage children to make their own financial decisions with things like pocket money or savings. If you feel you need to improve your own financial literacy first, there are many resources available for adults.

The ConversationTeaching children about money through mathematics helps children learn. It helps them use mathematics in real-life scenarios and, more importantly, can help set them up for future financial security.

Catherine Attard, Associate Professor, Mathematics Education, Western Sydney University

This article was originally published on The Conversation. Read the original article.


Technology in the classroom can improve primary mathematics

File 20170905 28074 1wx7i8h
There’s much more to mathematics than computation, and that’s where more contemporary technologies can improve primary mathematics.

Catherine Attard, Western Sydney University

Many parents are beginning to demand less technology use in the primary classroom due to the amount of screen time children have at home. This raises questions about whether technology in the classroom helps or hinders learning, and whether it should be used to teach maths.

Blaming the calculator for poor results

We often hear complaints that children have lost the ability to carry out simple computations because of the reliance on calculators in primary schools. This is not the case. In fact, there has been very little research conducted on the use of calculators in classrooms since the 80’s and 90’s because they are not a significant feature of primary school maths lessons. When calculators are used in primary classrooms, it’s usually to help children develop number sense, to investigate number patterns and relationships, or to check the accuracy of mental or written computation.

There is also evidence that children become more flexible in the way they compute through the use of calculators. It allows them to apply their knowledge of place value and other number related concepts rather than using a traditional algorithm.

The Australian Curriculum promotes a strong focus on the development of numeracy, including the development of estimation and mental computation. These are skills that children need in order to use calculators and other technologies efficiently.

The curriculum also promotes the thinking and doing of mathematics (referred to as “proficiencies”) rather than just the mechanics. There’s much more to mathematics than computation. That’s where more contemporary technologies can improve primary mathematics.

The importance of technology in learning maths

The use of digital technologies in the primary mathematics classroom is not an option. The Australian Curriculum and Reporting Authority (ACARA) has made it mandatory for teachers to incorporate technologies in all subject areas. Fortunately, schools have access to more powerful, affordable devices than ever before. Importantly, these are the same devices that many children already have access to at home, providing an opportunity to bridge the gap between the mathematics at school and their lives outside the classroom.

Literature around digital technologies and mathematics suggest new technologies have potentially changed teaching and learning, providing opportunities for a shift of focus from a traditional view to a more problem-solving approach. This notion is supported by research that claims the traditional view of mathematics that was focused on memorisation and rote learning is now replaced with one that has purpose and application.

When used well, technology can improve student engagement with mathematics and assists in improving their understanding of mathematical concepts.

In a recent research evaluation of the Matific digital resources, the findings were positive. The students found that they enjoyed using the digital resource on iPads and computers, and went from thinking about mathematics as something to be tolerated or endured to something that is fun to learn. An added bonus was that the children voluntarily started to use their screen time at home to do maths. Pre- and post-test data also indicated that the use of the technology contributed to improved mathematics results.

How technology is used in the classroom

Many would consider that the use of mobile devices in maths would consist of simple game playing. A search of the App Store reveals tens of thousands of supposedly educational maths games, creating a potential app trap for teachers who might spend hours searching through many low- quality apps. Although playing games can have benefits in terms of building fluency, they don’t usually help children learn new concepts. Luckily, there’s much that teachers can and are doing with technology.

The following are some of the different ways teachers are using technology:

Show and tell apps, such as Explain Everything, EduCreations or ShowMe, allow students to show and explain the solution to a mathematical problem using voice and images

– Flipped learning, where teachers use the technology to replace traditional classroom instruction. YouTube videos or apps that provide an explanation of mathematical concepts are accessed by students anywhere and anytime

– Subscription based resource packages such as Matific which provide interactive, game-based learning activities, allow the teacher to set activities for individual students and keep track of student achievement

– Generic apps (camera, Google Earth, Google Maps, Geocaching) that allow students to explore mathematics outside the classroom.

The ConversationJust as the world has changed, the mathematics classroom has also changed. Although technology is an integral part of our lives, it shouldn’t be the only resource used to teach maths. When it comes to technology in the classroom, it’s all about balance.

Catherine Attard, Associate Professor, Mathematics Education, Western Sydney University

This article was originally published on The Conversation. Read the original article.

For a list of maths apps, click here:

iPad apps and Mathematics 2015

Beyond Monday’s Maths Class: Making the Most of Teacher PD

Last weekend I travelled interstate to attend a professional development day for teachers of mathematics. It was a good day, with lots of ideas shared and great enthusiasm from the 500+ audience. The presenter was well informed and, in fact, created quite a lot of hype due to her international reputation. Everyone went home happy and the word on Twitter was that Monday’s maths lessons were going to be different. Fantastic! But what about Tuesday’s lesson, and what about next week’s, next month’s, and next year’s lessons? What about the lessons of other teachers in the school?

How do you make the most of professional development?

Too often teachers attend PD sessions, get enthusiastic, try a few new things, but quickly get bogged down in the day-to-day challenges of life in a busy school and the demands of administration and curriculum authorities. How can you translate the underlying philosophy being promoted in the professional development sessions into sustainable change that can be shared amongst colleagues to improve and transform mathematics teaching and learning?

PD is expensive, and it’s important that opportunities aren’t wasted. I’ve been talking and writing a lot recently about promoting critical thinking in the mathematics classroom. It’s equally as important for teachers to engage critically with professional development. The following list contains a few thoughts that might help teachers get the most out of PD opportunities.

  1. Choose the right PD

Do a little research on the person presenting the PD. What are their credentials? Are they a self-proclaimed expert or do they have an established reputation? A simple Google search should reveal some insights, and, if the presenter is an academic, you could search Google Scholar for some of their academic publications. Spending time researching the presenter’s background can save you from attending a PD session that may not be right for you, and can provide some good research background should you choose to go ahead with the session. You also need to consider what you want out of a PD session. If you want a ‘bag of tricks’ in the form of a handful of ready to go activities, then you probably shouldn’t be wasting your school’s money. Rather, think about PD that is going to cause you to think deeply about your practice, and have a long-term effect on students’ educational outcomes.

  1. Does the presenter understand the Australian school context and curriculum?

When you attend PD, you expect that the presenter is aware of the Australian school context, and more importantly, the Australian Curriculum. This assists you, the teacher, in applying the learning to your practice, and also makes the content of the PD more relevant to you and your students.

  1. Understand the structure of the PD session

Before you commit to attending a PD session, ensure you understand what is going to happen in that session. Nobody likes sitting down and being lectured to for hours on end, nor do you want to listen to a presenter talk about themselves for an entire day! Look for presentations that are interactive and allow participants to apply theory to practical activities. If we are going to ask our students to do something differently, we need to experience it ourselves first. It’s also a better way of retaining information.

  1. Active Participation

When you’re at the PD session, don’t be afraid to ask questions. It’s also important to think critically about the information you are receiving. Presenters are usually very happy to answer questions that spark discussion – this often results in deeper learning, and better value for your school’s money! If the presenter doesn’t welcome questions, this is a sign that they may not have expert knowledge.  During the PD session it’s important that you participate in any activities – there’s usually a good reason a presenter has asked you to engage in a task. Active participation gives insight into the student experience and possible challenges, and it’s a great way to make links between theory and practice.

  1. Use the session as a networking opportunity

Often one of the most valuable aspects of professional development sessions is the opportunity to connect with teachers from other schools. It’s a great opportunity to discuss practice, students and school procedures. Networks developed at PD sessions can be maintained easily using tools such as LinkedIn, Twitter, and Facebook.

  1. Reflection

Before you leave your PD session, pause and consider what you have learned (a good presenter will actually give you opportunity to reflect). Think about how you might apply what you have learned (not just the activities, but the educational philosophy underpinning them) to your classroom, and don’t limit yourself to just replicating the activities. What are the underlying messages? How can you use those messages to adapt your practice? What will be different in the way that you plan and implement lessons? It doesn’t have to be a big change. Often subtle differences have huge effects.

  1. Sustainability: Sharing the Learning

Finally, it’s important to share the learning. It’s difficult to sustain any kind of change that will have ongoing benefit for students if it’s not supported by others in your school. This may not be easy, but small changes are better than no changes. Sometimes it’s a good idea to try out new things in your own class first, then use evidence of your success to convince others.

When it comes to PD, one of the most important things to remember is the reason we do what we do. We want our students to be the best they can, and when it comes to mathematics, we want to give them confidence, skill, passion and excitement that will ensure they continue to study and use mathematics beyond their school education.